Toll Free 1800-123-2003

Brace yourself to the best.

Medical Entrance


Physics

UNIT 1: INTRODUCTION AND MEASUREMENT

Physics – Scope and excitement; Physics in relation to science, society and technology – inventions, names of scientists and their fields, nobel prize winners and topics, current developments in physical sciences and related technology. Units for measurement – systems of units, S .I units, conversion from other systems to S.I units. Fundamental and derived units. Measurement of length, mass and time, least count in measuring instruments (eg. vernier calipers, screw gauge etc), Dimensional analysis and applications, order of magnitude, accuracy and errors in measurement, random and instrumental errors, significant figures and rounding off principles.

UNIT 2 : DESCRIPTION OF MOTION IN ONE DIMENSION

Objects in motion in one dimension – Motion in a straight line, uniform motion – its graphical representation and formulae; speed and velocity - instantaneous velocity; ideas of relative velocity with expressions and graphical representations; Uniformly accelerated motion, position – time graph, velocity – time graph and formulae. Elementary ideas of calculus – differentiation and integration – applications to motion.

UNIT 3 : DESCRIPTION OF MOTION IN TWO AND THREE DIMENSIONS

Vectors and scalars, vectors in two and three dimensions, unit vector, addition and multiplication, resolution of vector in a plane, rectangular components, scalar and vector products. Motion in two dimensions – projectile motion, ideas of uniform circular motion, linear and angular velocity, relation between centripetal acceleration and angular speed.

UNIT 4 : LAWS OF MOTION

Force and inertia, first law of motion, momentum, second law of motion, forces in nature, impulse, third law of motion, conservation of linear momentum, examples of variable mass situation, rocket propulsion, equilibrium of concurrent forces.

Static and kinetic friction, laws of friction, rolling friction, lubrication. Inertial and non-inertial frames (elementary ideas); Dynamics of uniform circular motion – centripetal and centrifugal forces, examples : banking of curves and centrifuge.

UNIT 5 : WORK, ENERGY AND POWER

Work done by a constant force and by a variable force, units of work – Energy – kinetic and potential forms, power, work-energy theorem. Elastic and inelastic collisions in one and two dimensions. Gravitational potential energy and its conversion to kinetic energy, spring constant, potential energy of a spring, Different forms of energy, mass – energy equivalence (elementary ideas), conservation of energy, conservative and non-conservative forces.

UNIT 6: MOTION OF SYSTEM OF PARTICLES AND RIGID BODY ROTATION

Centre of mass of a two particle system, generalisation to N particles, momentum conservation and center of mass motion, applications to some familiar systems, center of mass of rigid body. Moment of a force, torque, angular momentum, physical meaning of angular momentum, conservation of angular momentum with some examples, eg. planetary motion. Equilibrium of rigid bodies, rigid body rotation and equation of rotational motion, comparison of linear and rotational motions, moment of inertia and its physical significance, radius of gyration, parallel and perpendicular axes theorems (statements only), moment of inertia of circular ring and disc, cylinder rolling without slipping.

UNIT 7 : GRAVITATION

Universal law of gravitation, gravitational constant (G) and acceleration due to gravity (g), weight and gravitation, variation of g with altitude, latitude, depth and rotation of earth. Mass of earth, gravitational potential energy near the surface of the earth, gravitational potential, escape velocity, orbital velocity of satellite, weightlessness, motion of geostationary and polar satellites, statement of Kepler’s laws of planetary motion, proof of second and third laws, relation between inertial and gravitational masses.

UNIT 8 : MECHANICS OF SOLIDS AND FLUIDS

Solids : Hooke’s law, stress – strain relationships, Youngs modulus, bulk modulus, shear modulus of rigidity, some practical examples. Fluids : Pressure due to fluid column, Pascal’s law and its applications (hydraulic lift and hydraulic brakes), effect of gravity on fluid pressure, Buoyancy, laws of floatation and Archimedes principles, atmospheric pressure. Surface energy and surface tension, angle of contact, examples of drops and babbles, capillary rise, detergents and surface tension, viscosity, sphere falling through a liquid column, Stokes law, streamline flow, Reynold’s number, equation of continuity, Bernoulli’s theorum and applications.

UNIT 9 : HEAT AND THERMODYNAMICS

Kinetic theory of gases, assumptions, concept of pressure, kinetic energy and temperature, mean-rms and most probable speed, degrees of freedom, statement of law of equipartition of energy, concept of mean free path and Avogadros’ number Thermal equilibrium and temperatures, zeroth law of thermodynamics, Heat-work and internal energy, Thermal expansion – thermometry. First law of thermodynamics and examples, specific heat, specific heat of gases at constant volume and constant pressure, specific heat of solids, Dulong and Petit’s law. Thermodynamical variables and equation of state, phase diagrams, ideal gas equation, isothermal and adiabatic processes, reversible and irreversible processes, Carnot engines, refrigerators and heat pumps, efficiency and coefficient performance of heat engines , ideas of second law of thermodynamics with practical applications. Thermal radiation – Stefan-Boltzmann law, Newton’s law of cooling.

UNIT 10 : OSCILLATIONS

Periodic motion – period, frequency, displacement as a function of time and periodic functions; Simple harmonic motion (S.H.M) and its equation, uniform circular motion and simple harmonic motion, oscillations of a spring, restoring force and force constant, energy in simple harmonic motion, kinetic and potential energies, simple pendulum – derivation of expression for the period; forced and damped oscillations and resonance (qualitative ideas only), coupled oscillations.

UNIT 11: WAVES

Longitudinal and transverse waves, wave motion, displacement relation for a progressive wave, speed of a traveling wave, principle of superposition of waves, reflection of waves, standing waves in strings and pipes, fundamental mode and harmonics, beats, Doppler effect of sound with applications.

UNIT 12: ELECTROSTATICS

Frictional electricity; Properties of electric charges - conservation, additivity and quantisation. Coulomb’s law – Forces between two point electric charges, Forces between multiple electric charges; Superposition principle and continuous charge distribution. Electric field and its physical significance, electric field due to a point charge, electric field lines; Electric dipole, electric field due to a dipole and behavior and dipole in a uniform electric field. Electric potential-physical meaning, potential difference, electric potential due to a point charge, a dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of point charges, electric dipoles in an electrostatic field. Electric flux, statement of Gauss’ theorem-its application to find field due to an infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell. Conductors and insulators-presence of free charges and bound charges; Dielectrics and electric polarization, general concept of a capacitor and capacitance, combination of capacitors in series and in parallel, energy stored in a capacitor, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, Van de Graff generator.

UNIT 13: CURRENT ELECTRICITY

Electric current, flow of electric charges in a metallic conductor, drift velocity and mobility, their relation with electric current; Ohm’s law, electrical resistance, V-I characteristics, limitations of Ohm’s law, electrical resistivity and conductivity, classification of materials in terms of conductivity; Superconductivity (elementary idea); Carbon resistors, colour code for carbon resistors; combination of resistances - series and parallel. Temperature dependence of resistance. Internal resistance of a cell, Potential difference and emf of a cell, combination of cells in series and in parallel. Kirchoff’s laws-illustration by simple applications, Wheatstone bridge and its applications, Meter bridge. Potentiometer - principle and applications to measure potential difference, comparison of emf of two cells and determination of internal resistance of a cell. Electric power, thermal effects of current and Joule’s law; Chemical effects of current, Faraday’s laws of electrolysis, Electro-chemical cells.

UNIT 14: MAGNETIC EFFECT OF CURRENT AND MAGNETISM

Concept of a magnetic field, Oersted’s experiment, Biot-Savart’s law, magnetic field due to an infinitely long current carrying straight wire and a circular loop, Ampere’s circuital law and its applications to straight and toroidal solenoids. Force on a moving charge in a uniform magnetic field, cyclotron. Force on current carrying conductor and torque on current loop in magnetic fields, force between two parallel current carrying conductors, definition of the ampere. Moving coil galvanometer and its conversion into ammeter and voltmeter. Current loop as a magnetic dipole, magnetic moment, torque on a magnetic dipole in a uniform magnetic field, Lines of force in magnetic field. Comparison of a bar magnet and solenoid. Earth’s magnetic field and magnetic elements, vibration magnetometer. Para, dia and ferromagnetic substances with examples. Electromagnets and permanent magnets.

UNIT 15: ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT

Electromagnetic induction, Faraday’s laws, Induced e.m.f. and current, Lenz’s law, Eddy currents, self and mutual inductance. Alternating current, peak and rms value of alternating current/voltage, reactance and impedance, L.C. oscillations, LCR series circuit. (Phasor diagram), Resonant circuits and Q-factor; power in A.C. circuits, wattless current. AC generator and Transformer.

UNIT 16: ELECTROMAGNETIC WAVES

Properties of electromagnetic waves and Maxwell’s contributions (qualitative ideas), Hertz’s experiments, Electromagnetic spectrum (different regions and applications), propagation of electromagnetic waves in earth’s atmosphere.

UNIT 17: OPTICS

Reflection in mirrors, refraction of light, total internal reflection and its applications, spherical lenses, thin lens formula, lens maker’s formula; Magnification, Power of a lens, combination of thin lenses in contact; Refraction and dispersion of light due to a prism, Scattering of light, Blue colour of the sky and appearance of the sun at sunrise and sunset. Optical instruments, Compound microscope, astronomical telescope (refraction and reflection type) and their magnifying powers. Wave front and Huygen’s principle. Reflection and refraction of plane wave at a plane surface using wave fronts (qualitative idea); Interference-Young’s double slit experiment and expression for fringe width, coherent sources and sustained interference of light; Diffraction due to a single slit, width of central maximum, difference between interference and diffraction, resolving power of microscope and telescope; Polarisation, plane polarised light, Brewster’s law, Use of polarised light and polaroids.

UNIT 18: DUAL NATURE OF MATTER AND RADIATIONS

Photoelectric effect, Einstein photoelectric equation - particle nature light, photo-cell, Matter waves - wave nature of particles. De Broglie relation, Davisson and Germer experiment.

UNIT 19: ATOMIC NUCLEUS

Alpha particle scattering experiment, size of the nucleus - composition of the nucleus - protons and neutrons. Nuclear instability - Radioactivity-Alpha, Beta and Gamma particle/rays and their properties, radio- active decay laws, Simple explanation of -decay, -decay and decay; mass- energy relation, mass defect, Binding energy per nucleon and its variation with mass number. Nature of nuclear forces, nuclear reactions, nuclear fission, nuclear reactors and their uses; nuclear fusion, elementary ideas of energy production in stars.

UNIT 20: SOLIDS AND SEMICONDUCTOR DEVICES

Energy bands in solids (qualitative ideas only), difference between metals, insulators and semi- conductors using band theory; Intrinsic and extrinsic semi-conductors, p-n junction, Semi-conductor diode-characteristics forward and reverse bias, diode as a rectifier, solar cell, photo-diode, zener diode as a voltage regulator; Junction transistor, characteristics of a transistor; Transistor as an amplifier (common emitter configuration) and oscillator; Logic gates (OR, AND, NOT, NAND, NOR); Elementary ideas about integrated circuits.

UNIT 21: PRINCIPLES OF COMMUNICATIONS

Elementary idea of analog and digital communication; Need for modulation, amplitude, frequency and pulse modulation; Elementary ideas about demodulation, Data transmission and retrieval, Fax and Modem. (basic principles) Space communications - Ground wave, space wave and sky wave propagation, satellite communications.

Biology

UNIT 1 : DIVERSITY IN THE LIVING WORLD

Characters of Living organisms, Biosystematics, Binomial nomenclature (guidelines and merits), Taxonomic categories, Taxonomical Aids, Systems of classification – Two Kingdom and Five Kingdom classification – (brief description with emphasis on criteria, merits and demerits). Descriptive features of kingdoms: Monera, Protista, Fungi, Plantae and Animalia; viruses, Viriods and Lichens.

UNIT 2 : PLANT KINGDOM

Brief description of Artificial, natural and phylogenetic classification.
2.1 Plant groups

Algae – Salient, comparative features of Rhodophyta, Phaeophyta and Chlorophyta with examples.

Bryophyta – General features with special mention on aquatic to terrestrial evolution, alternation of generation of Liverworts and Mosses.

Pteridophytes – General features with examples.

Gymnosperms – General features with examples.

Angiosperms – Unique features with examples.

Plant Life Cycle and alternation of generation.

2.2 Morphology of Angiosperms
Morphological structures of root, stem and leaf, their structural and functional modifications with examples, Inflorescence – Racemose, Cymose, morphological characters of flower, fruit and seed.

2.3 Taxonomy of Angiosperms
Description of taxonomical types, families such as Fabaceae, Solanacea and Liliaceae with examples.

2.4 Anatomy of flowering plants

Tissue: Meristematic (Classification based on origin, position and plane of division); Permanent (Simple and complex types); Tissue systems (epidermal, ground and vascular); Anatomy of root and stem (primary structure) of monocot and dicot; Anatomy of leaf of monocot and dicot; Normal secondary growth of stem and root.

UNIT 3 : CELL AND CELL DIVISION

3.1 Cell as a basic unit of life: Cell theory; Cell as a self-contained unit, unicellularity and multicellularity, prokaryotic and eukaryotic systems.

3.2 Ultra Structure: Prokaryotic and eukaryotic cell, cell wall, cell membrane (Fluid Mosaic Model), membrane transport, description of cell organelles and their function (nucleus, mitochondria, plastids, endoplasmic reticulum, golgi bodies, lysosomes, cytoskeletal structures, cilia and flagella, centriole, ribosomes).

3.3 Biomolecules of cell: Inorganic and organic materials (carbohydrates, lipids, proteins, nucleic acids -RNA, DNA), enzymes (properties, chemical nature and mechanism of action).

3.4 Cell cycle: Cell division, mitosis and meiosis –their significance.

UNIT 4 : PHYSIOLOGY OF PLANTS

4.1 Transport in plants – Means of transport (imbibition, diffusion, osmosis, plasmolysis, permeability, water potential), absorption and movement – active and passive. Transpiration: Mechanism of opening and closing of stomata, guttation, significance of transpiration. Uptake and transport of mineral nutrients.

4.2 Mineral nutrition:Functions of minerals, macro and micro elements, deficiency symptoms of elements. Toxicity of micronutrients, Nitrogen metabolism: Nitrogen cycle, biological nitrogen fixation, mechanism, synthesis of amino acids (reductive amination, transamination).

4.3 Photosynthesis: Significance, photosynthetic apparatus, functional aspects of chlorophyll structure, action spectra and absorption spectra. Mechanism: Photochemical phase, photo phosphorylation (cyclic and non cyclic electron transport system), chemiosmotic hypothesis, biosynthetic phase (C3, C4); Photorespiration and its mechanism; Factors affecting photosynthesis (Blackmann’s law of limiting factor).

4.4 Respiration: Significance, site of respiration, mechanism: Glycolysis, Kreb’s cycle, electron- transport system and oxidative phosphorylation, amphibolic pathway; Respiratory quotient; Anaerobic respiration, fermentation.

UNIT 5 : REPRODUCTION, GROWTH AND DEVELOPMENT

5.1 Modes of reproduction in flowering plants Vegetative propagation (natural and artificial), micro- propagation, significance. Sexual reproduction: Development of male and female gametophytes, pollination types and factors, double fertilization, incompatibility; seed and fruit development, parthenogenesis and parthenocarpy, polyembryonic.

5.2 Plant Growth
Characteristic features, measurement of growth, growth curve, growth rate, differentiation and growth regulators (phytohormones): auxins, gibberellins, cytokinines, ethylene, abscisic acid (ABA) and their role. photoperiodism and vernalisation.

UNIT 6 : ECOLOGY AND ENVIRONMENT

6.1 Organisms and population – Organism and its environment: Factors: biotic, abiotic (air, water, soil, temperature and light); responses to abiotic factors, adaptations, population, population attributes, population growth, Interactions, predation, competition, parasitism, commensalism and mutualism.

6.2 Ecosystem: Structure and function, productivity, decomposition, energy flow, ecological pyramids, ecological succession, nutrient cycling, brief descriptions of major biomes.

6.3 Environmental Issues: Sources of air, water, soil and noise pollution; Major pollutants, their effects and methods of control. Pollution due to radioactive substance, disposal of nuclear wastes. effect and control of radiation pollution, agrochemical and their effects, Green house effect and global warming, ozone depletion, deforestation.

UNIT 7 : BIOTECHNOLOGY

Principles of biotechnology, tools of recombinant DNA technology, process of recombinant DNA technology, biotechnological application in agriculture, genetically modified crops, biotechnological applications in medicine, genetically engineered insulin, gene therapy, molecular diagnosis, transgenic animals and ethical issues.

UNIT 8 : ORIGIN AND EVOLUTION OF LIFE

8.1 Origin of life, Big bang theory, various theories, panspermia, abiogenesis, chemical evolution –Oparin-Haldane Hypothesis, Harold Urey & Stanley Miller experiment, Theories of Evolution – Lamarckism, Theory of Inheritance of Acquired Character, Theory of Use and Disuse, Darvinism – Natural selection theory, Example of natural selection – Industrial Melanism, Geological timescale.

8.2 Evidences of Evolution -Palaentological, Morphological and Anatomical evidences of evolution.

8.3 Population Genetics & Evolution -Hardy Weinberg’s Equilibrium, genetic drift, founder effect.

8.4 Adaptive radiation – Adaptive radiation of marsupials of Australia.

8.5 Origin and Evolution of Man

UNIT 9 – ANIMAL KINGDOM

9.1 Salient features of different Phyla with examples, Grades of organization and body plan, body symmetry, germ layers (diploblastic & triploblastic organization), segmentation, coelom.

Phylum Porifera eg: Sycon, Leucosolenia, Spongilla

Phylum Cnidaria eg: Hydra, Obelia, Physalia, Aurelia, Sea Anemone, Corals

Phylum Ctenophora eg: pleurobrachia, etenoplana

Phylum Playhelminthes eg.: Taenia, Fasciola, Planaria

Phylum Aschelminthes eg: Ascaris, Rhabditis, Wuchereria, Ancylostoma

Phylum Annelida eg: Nereis, Aphrodite, Pheretima, Hirudinaria

Phylum Arthropoda eg: Honeybee, Silkworm, Lacinsect, Anophelus, Locus, Limulus

Phylum Mollusca eg: Pila, Pinctada, Sepia, Loligo, Octopus, Aplysia, Deutalium, Chaetopleura

Phylum Echinodermata eg: Asterias, Echinus, Antedon, Sea cucumber, Ophiura.

Phylum Hermichordata eg: Balanoglosus, Saccoglosus

Phylum Chordata - Urochordata eg: Ascidia, Salpa doliolum

Cephalochordata eg: Amphioxus

Vertebrata – Classification up to classes

Super class I. Agnatha. Class – Cyclostomata eg: Petromyzon and Myxine.

Super class II. Gnathostomata Class a - Chondrichthyes (Cartilaginous fishes) eg: Scoliodon, Pristis, carcharodon, Trygon.

Class b. Osteichthyes (Bony fishes) eg.: Exocoetus, Hippocampus, Rohu, Catla, Clarius, Betta, Pterophyllum.

Class c. Amphibia - eg: Bufo, Rana, Hyla, Salamander, lchthyophis.

Class d. Reptilia eg: Chelone, Chameleon, Testudo, Hemidactylus, Calotes, Naja, Krait, Viper, Crocodile, Alligator.

Class e. Aves - eg: Corvus, Columba, Psittacula, Struthio, Pavo, Penguin, Vulture.

Class f. Mammalia eg: Platypus, Kangaroo, Whale, Macaca, Panthera, Elephus, Horse, Rat, Dolphin, Cat, Camel, Pteropus.

UNIT 10 : STRUCTURAL ORGANISATION OF THE BODY

10.1 Animal Morphology: External and internal morphology, Earthworm, Cockroach, Frog.

10.2 ANIMAL TISSUES – Definition, Types of tissues - Epithelial tissue - different types with examples, specialized epithelial tissue with examples, Connective tissue with examples, Muscular tissue with examples, Nervous tissue with examples, Structure and functions of these tissues.

UNIT 11 : GENETICS

11.1 Heredity and variation - Mendel’s experiments, Laws of Mendel, Chromosome theory of inheritance, Pattern of inheritance, Incomplete dominance, Codominane chromosomes, Prokaryotic & Eukaryotic Chromosomes, Nucleosomes, Chromosome theory of inheritance, Concept of linkage and crossing over, Principle of gene mapping, sex linked inheritance, sex determination, sex limited and sex influenced inheritance, Mutation, Gene mutation, Chromosomal aberration, Polyploidy, aneuploidy and Euploidy, Mutation causing agents, Human Genetics, Pedigree Analysis, Genetic Disorders, Sickle cell anaemia, Phenylketonuria, Alzheimer’s disease, Down’s Syndrome, Klinefelter’s Syndrome.


11.2 Nature of Genetic Material: DNA and its structure, Different types of DNA, RNA and its structure, Experiments to prove genetic nature of DNA. DNA and Gene, DNA Replication, Gene expression- Gene and Protein, Biosynthesis of Protein, Genetic code, Regulation of Gene expression in prokaryotes and eukaryotes, Human genome project and DNA finger printing.

UNIT 12 : PHYSIOLOGY OF ANIMALS

12.1 Nutrition, Different types of nutrition, Different types of nutrients, Malnutrition, Under nutrition, Disorders related to nutrition.Digestion – Human digestive system, Structure of alimentary canal, Glands associated with alimentary canal, Different enzymes secreted by the alimentary canal, Functions of various enzymes, Role of various regions of alimentary canal in absorption, Process of ingestion and digestion, Mechanism of absorption and assimilation of digested food components.

12.2 Respiration - Aerobic and Anaerobic Respiration, Mechanism of gas exchange, Human Respiratory system, Respiratory organs and mechanism involved in pulmonary respiration, Gas exchange and transport of respiratory gases, Respiratory pigments involved, Regulation of respiration, Respiratory disorders, Bronchitis, Bronchial Asthma, Emphysema,Occupational lung diseases, Causes of these disorders – symptoms, prevention and cure.

12.3 Circulation - composition of blood, structure and functions of different types of blood cells, Blood groups, Structure and working of heart, pulmonary, systemic and portal circulation, Pulse, heart beat and blood pressure, Rhythmicity of heart, Regulation of heart beat, Blood related disorders – hypertension, atherosclerosis and arteriosclerosis, Electro cardio gram, Heart failure, Lymph and its functions.

12.4 Excretion – Definition, Different types of excretory organs - Skin, lungs and liver as excretory organs, Nitrogenous excretion, Different types of Nitrogenous excretion with examples, Ammenotelism, ureotelism and uricotelism, Excretory system in man, Structure of kidney, Composition and formation of urine, Role of Kidney in osmoregulation, Hormonal regulation of excretory system, Dialysis.

12.5 Locomotion and Movement- Human skeleton, Axial and appendicular skeleton, Joints, Types of joints with examples, Bone and cartilage, Structure of Bone and Cartilage, Disordres of bone and cartilage - Arthritis and Osteoporosis, Muscles, Different types of muscles, Structure of skeletal muscles, Mechanism of muscle contraction, Role of red and white muscles in movement, Role of muscles and bones in movement.

12.6 Nervous Co-ordination, Human nervous system, Morphology of functional subsystems of nervous system, Different types of nerve cells, Structure and functions of brain and spinal cord, Nerve impulse, Synapse, Transmission and conduction of nerve impulse, Reflex action, Reflex arc, Sensory receptors, Structure and functions of eye and ear.

12.7 Hormones, Different types of hormones, Hormones produced by human endocrine glands and their functions, Hormone imbalance and disorders, Role of hormones as messengers and regulators, Feed back control of various hormones. Mechanism of hormone action.

UNIT 13 : REPRODUCTION AND DEVELOPMENT IN ANIMALS

13.1 Reproduction: Different types of asexual reproduction with examples, Sexual reproduction, Reproductive organs, Structure and function of human male and female reproductive system, Reproductive cycle in human female, Gametogenesis, fertilization (Physical and chemical events), Development of zygote up to 3 germinal layers and their derivatives, Extra embryonic membranes, Structure and functions of placenta, parturition and lactation.

13.2 Reproductive health – Population explosion and birth control, Medical termination of pregnancy, sexually transmittable diseases, Infertility.

UNIT 14 : BIODIVERSITY AND CONSERVATION

Biodiversity definition, Significance of biodiversity, Magnitude of biodiversity, Levels of biodiversity, gradients of biodiversity, Uses of biodiversity, Threats of biodiversity, Endangered species, Extinction, Causes of extinction, Conservation of biodiversity, protected areas, National and International efforts, Role of Governmental and non-governmental organizations in conservation of bio-diversity, Environmental ethics, Responsibility of individual in biodiversity conservation.

UNIT 15 : BIOLOGY IN HUMAN WELFARE

15.1 Human Health and Diseases – common diseases in humans – Typhoid, pneumonia, common cold, malaria, amoebiasis, ascariasis, elephantiasis. Immunity - innated and acquired, active and passive immunity, vaccination and immunization, allergies, autoimmunity, immune system in the body, AIDS, cancer, drugs and alcohol abuse, common problems of adolescence, Social and moral implications, Problems associated with drugs, smoking and alcoholism, prevention and control.

15.2 Strategies for enhancement in food production - Animal husbandary, dairy farming, poultry farming, animal breeding, bee keeping, pisciculture, plant breeding, breeding for disease resistance and tissue culture, single cell protein.

15.3 Microbes in human welfare – Microbes in household projects, microbes in industrial products, fermented beverages, antibiotics, chemicals, enzymes and other bioactive molecules – microbes in sewage treatment, microbes in production of biogas, microbes as biocontrol agents and microbes as biofertilizers.

Chemistry

UNIT 1: BASIC CONCEPTS AND ATOMIC STRUCTURE

Laws of chemical combination: Law of conservation of mass. Law of definite proportion. Law of multiple proportions. Gay-Lussac’s law of combining volumes. Dalton’s atomic theory. Mole concept. Atomic, molecular and molar masses. Chemical equations. Balancing and calculation based on chemical equations.

Atomic structure: Fundamental particles. Rutherford model of atom. Nature of electromagnetic radiation. Emission spectrum of hydrogen atom. Bohr model of hydrogen atom. Drawbacks of Bohr model. Dual nature of matter and radiation. de Broglie relation. Uncertainty principle. Wave function (mention only). Atomic orbitals and their shapes (s, p and d orbitals only). Quantum numbers. Electronic configurations of elements. Pauli’s exclusion principle. Hund’s rule. Aufbau principle.

UNIT 2: BONDING AND MOLECULAR STRUCTURE

Kossel and Lewis approach of bonding. Ionic bond, covalent character of ionic bond, Lattice energy. Born-Haber cycle. Covalent bond. Lewis structure of covalent bond. Concept of orbital overlap. VSEPR theory and geometry of molecules. Polarity of covalent bond. Valence bond theory and hybridization (sp, sp2, sp3, dsp2, d2sp3 and sp3d2). Resonance. Molecular orbital method. Bond order. Molecular orbital diagrams of homodiatomic molecules. Bond strength and magnetic behaviour. Hydrogen bond. Coordinate bond. Metallic bond.

UNIT 3: STATES OF MATTER

Gaseous state: Boyle’s law. Charles’ law. Avogadro’s hypothesis. Graham’s law of diffusion. Absolute scale of temperature. Ideal gas equation. Gas constant and its values. Dalton’s law of partial pressure. Aqueous tension. Kinetic theory of gases. Deviation of real gases from ideal behaviour. Inter molecular interaction, van der Waals equation. Liquefaction of gases. Critical temperature. Liquid state: Properties of liquids. Vapour pressure and boiling point. Surface tension. Viscosity. Solid state: Types of solids (ionic, covalent and molecular). Space lattice and unit cells. Cubic crystal systems. Close packing. Different voids (tetrahedral and octahedral only). Density calculations. Point defects (Frenkel and Schottky). Electrical properties of solids. Conductors, semiconductors and insulators. Piezoelectric and pyroelectric crystals. Magnetic properties of solids. Diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic substances.

UNIT 4: PERIODIC PROPERTIES OF ELEMENTS AND HYDROGEN

Classification of elements: Mendeleev’s periodic table. Atomic number and modern periodic law. Long form of periodic table. Electronic configurations of elements and their position in the periodic table. Classification into s-, p-, d- and f-block elements. Periodic properties: Ionization energy, electron affinity, atomic radii, valence and electro negativity. Hydrogen: Position in the periodic table, occurrence, isolation, preparation (including commercial), properties, reactions and uses. Isotopes of hydrogen. Hydrides: Molecular, saline and interstitial hydrides. Water: Structure of water molecule and its aggregates. Physical and chemical properties of water. Hard and soft water. Removal of hardness. Preparation and uses of heavy water: Liquid hydrogen as fuel.

UNIT 5: S-BLOCK ELEMENTS AND PRINCIPLES OF METALLURGY

Alkali metals: Occurrence, electronic configuration, trends in atomic and physical properties (ionization energy, atomic radii and ionic radii), electrode potential, and reactions with oxygen, hydrogen, halogens and liquid ammonia. Oxides, hydroxides and halides. Alkaline earth metals: Occurrence, electronic configuration, trends in atomic and physical properties, electrode potential, and reactions with oxygen, hydrogen and halogens. Oxides, hydroxides, halides and sulphides. Anomalous properties of lithium and beryllium. Compounds of s-block elements: Large scale preparation of NaOH and Na2CO3, their properties and uses. Preparation and properties of CaO, Ca(OH)2, Plaster of Paris and MgSO4. Industrial uses of lime, limestone and cement. Principles of metallurgy: Occurrence of metals. Concentration of ores. General principles of extraction of metals from ore. Thermodynamic and electro chemical principles of metallurgy. Refining of metals. Extraction of zinc, aluminium, iron and copper.

UNIT 6: P-BLOCK ELEMENTS

General characteristics of p-block elements: atomic and physical properties. Oxidation states. Trends in chemical reactivity of Groups 13, 14, 15, 16 and 17 elements. Boron: Occurrence, isolation, physical and chemical properties. Borax and boric acid. Boron hydrides. Structure of diborane. Uses of boron and its compounds. Carbon: Allotropes, properties, Oxides of Carbon. Nitrogen: Terrestrial abundance and distribution, isolation, properties and chemical reactivity. Ammonia: Haber process of manufacture, properties and uses. Nitric acid: Ostwald process of manufacture and important uses. Oxides of nitrogen: Preparation and structures (skeletal only). Oxygen: Terrestrial abundance, isolation, properties and chemical reactivity. Oxides: Acidic, basic and amphoteric oxides. Preparation, structure, properties and uses of ozone and hydrogen peroxide. Silica: Different forms and uses. Structures of silicates. Silicones, Zeolites, Uses of Silicon Tetra Chloride. Phosphorus: Production, allotropes and phosphine. Preparation and structures of PCl3, PCl5, oxyacids of phosphorus. Comparison of halides and hydrides of Group 15 elements. Sulphur: Production, allotropes, oxides and halides, Oxoacids of Sulphur (structure only). Sulphuric acid: Manufacture, properties and uses. Comparison of oxides, halides and hydrides of Group 17 elements, Oxoacids of halogens (structure only), hydrides and oxides of chlorine. Interhalogen compounds. Group 18 elements: Occurrence, isolation, atomic and physical properties, uses. Compounds of xenon: Preparation of fluorides and oxides, and their reactions with water.

UNIT 7: D-BLOCK AND F-BLOCK ELEMENTS

d-Block elements: Electronic configuration and general characteristics. Metallic properties, ionization energy, electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, complex formation, magnetic properties, interstitial compounds and alloys. Preparation and properties of KMnO4, K2Cr2O7 . f-Block elements: Lanthanides: Occurrence, electronic configuration and oxidation states. Lanthanide contraction. Uses. Actinides: Occurrence, electronic configuration and comparison with lanthanides.

UNIT 8: THERMODYNAMICS

System and surrounding: Types of systems. Types of processes. Intensive and extensive properties. State functions and path functions. Reversible and irreversible processes. First law of thermodynamics: Internal energy and enthalpy. Application of first law of thermodynamics. Enthalpy changes during phase transition. Enthalpy changes in chemical reactions. Standard enthalpy of formation. Hess’s law of constant heat summation and numerical problems. Heat capacity and specific heat. Second law of thermodynamics: Entropy and Gibbs free energy. Free energy change and chemical equilibrium. Criteria for spontaneity.

UNIT 9: CHEMICAL EQUILIBRIUM

Physical and chemical equilibria: Dynamic nature of equilibrium. Equilibria involving physical changes (solid-liquid, liquid-gas, dissolution of solids in liquids and dissolution of gases in liquids). General characteristics of equilibria involving physical processes. Equilibria involving chemical systems: Law of chemical equilibrium. Magnitude of equilibrium constant. Numerical problems. Effect of changing conditions of systems at equilibrium (changes of concentration, temperature and pressure). Effect of catalyst. The Le Chatelier principle and its applications. Relationship between Kp and Kc. Ionic equilibrium. Ionization of weak and strong electrolytes. Concepts of acids and bases: Those of Arrhenius, Bronsted-Lowry and Lewis. Acid-base equilibrium. Ionization of water. pH scale. Salt hydrolysis. Solubility product. Common ion effect. Buffer action and buffer solutions.

UNIT 10: SOLUTIONS

Types of solutions: Different concentration terms (normality, molarity, molality, mole fraction and mass percentage). Solubility of gases and solids. Vapour pressure of solutions and Raoult’s law. Deviation from Raoult’s law. Colligative properties: Lowering of vapour pressure, elevation in boiling point, depression in freezing point and osmotic pressure. Ideal and non-ideal solutions. Determination of molecular mass. Abnormal molecular mass. The van’t Hoff factor and related numerical problems.

UNIT 11: REDOX REACTIONS AND ELECTROCHEMISTRY

Oxidation and reduction: Electron transfer concept. Oxidation number. Balancing equations of redox reactions: Oxidation number method and ion electron method (half reaction method). Faraday’s laws of electrolysis: Quantitative aspects. Electrolytic conduction. Conductance. Molar conductance. Kohlrausch’s law and its applications. Electrode potential and electromotive force (e.m.f.). Reference electrode (SHE only). Electrolytic and Galvanic cells. Daniel cell. The Nernst equation. Free energy and e.m.f. Primary and secondary cells. Fuel cell (H2-O2 only). Corrosion and its prevention: Electrochemical theory of rusting of iron. Methods of prevention of corrosion. Galvanization and cathodic protection.

UNIT 12: CHEMICAL KINETICS

Rate of reaction. Average and instantaneous rates. Rate expressions. Rate constant. Rate law. Order and molecularity. Integrated rate law expressions for zero and first order reactions and their derivations. Units of rate constant. Half life period. Temperature dependence of rate constant. Arrhenius equation. Activation energy, Collision Theory (Elementary theory) and related numerical problems. Elementary and complex reactions with examples.

UNIT 13: SURFACE CHEMISTRY

Adsorption: Physical and chemical adsorption. Factors affecting adsorption. Effect of pressure. Freundlisch adsorption isotherm. Catalysis. Enzymes. Zeolites. Colloids: Colloids and suspensions. Dispersion medium and dispersed phase. Types of colloids: Lyophobic, lyophilic, multimolecular, macromolecular and associated colloids. Preparation, properties and protection of colloids. Gold number. Hardy Schulze rule. Emulsions.

UNIT 14: COORDINATION COMPOUNDS AND ORGANOMETALLICS

Ligand. Coordination number. IUPAC nomenclature of coordination compounds mononuclear, Isomerism in coordination compounds. Geometrical, optical and structural isomerism. Bonding in coordination compounds. Werner’s coordination theory. Valence bond approach. Hybridization and geometry. Magnetic properties of octahedral, tetrahedral and square planar complexes. Introduction to crystal field theory. Splitting of d orbitals in octahedral and tetrahedral fields (qualitative only). Importance of coordination compounds in qualitative analysis and biological systems such as chlorophyll, hemoglobin and vitamin B12 (structures not included).

UNIT 15: BASIC PRINCIPLES, PURIFICATION AND CHARACTERIZATION OF ORGANIC COMPOUNDS

Distinction between organic and inorganic compounds. Tetra valence of carbon. Catenation. Hybridization (sp, sp2 and sp3). Shapes of simple molecules. General introduction to naming of organic compounds. Trivial names and IUPAC nomenclature. Illustrations with examples. Structural isomerism. Examples of functional groups containing oxygen, hydrogen, sulphur and halogens. Purification of carbon compounds: Filtration, crystallization, sublimation, distillation, differential extraction and chromatography (column and paper only). Qualitative analysis: Detection of carbon, hydrogen, nitrogen and halogens. Quantitative analysis: Estimation of carbon, hydrogen, nitrogen, sulphur, phosphorus and halogens (principles only), and related numerical problems. Calculation of empirical and molecular formulae.

UNIT 16: HYDROCARBONS

Classification of hydrocarbons. Alkanes and cycloalkanes: Nomenclature and conformation of ethane. 3D structures and 2D projections (Sawhorse and Newman). Alkenes and alkynes: Nomenclature. Geometrical isomerism in alkenes. Stability of alkenes. General methods of preparation. Physical and chemical properties. Markownikoff’s rule. Peroxide effect. Acidic character of alkynes. Polymerization reactions of dienes.

Aromatic hydrocarbons: Nomenclature. Isomerism. Benzene and its homologues. Structure of Benzene. Resonance. Delocalisation in benzene. Concept of aromaticity (an elementary idea). Chemical reactions of benzene. Polynuclear hydrocarbons and their toxicity.

UNIT 17: ORGANIC REACTION MECHANISM

Electronic displacement in a covalent bond:Inductive, electromeric, resonance and hyperconjugation effects. Fission of a covalent bond. Free radicals, electrophiles, nucleophiles, carbocations and carbanions. Common types of organic reactions: Substitution, addition, elimination and rearrangement reactions. Illustrations with examples. Mechanism of electrophilic addition reactions in alkenes. Concept of delocalisation of electrons. Mechanism of electrophilic substitution reactions. Directive influence of substituents and their effect on reactivity (in benzene ring only).

UNIT 18: STEREOCHEMISTRY

Stereoisomerism: Geometrical isomerism and optical isomerism. Specific rotation. Chirality and chiral objects. Chiral molecules. Configuration and Fischer projections. Asymmetric carbon. Elements of symmetry. Compounds containing one chiral center. Enantiomers. Racemic form. Racemization. Compounds containing two chiral centers. Diastereo isomers. Meso form. Resolution.

UNIT 19: ORGANIC COMPOUNDS WITH FUNCTIONAL GROUPS CONTAINING HALOGENS

Haloalkanes and haloarenes: Nomenclature and general methods of preparation. Physical properties. Nature of C-X bond in haloalkanes and haloarenes. Chemical properties and uses of chloromethane and chlorobenzene. Polyhalogen compounds: Preparation and properties of chloroform and iodoform. Uses of some commercially important compounds (chloroform, iodoform, DDT, BHC and freon).

UNIT 20: ORGANIC COMPOUNDS WITH FUNCTIONAL GROUPS CONTAINING OXYGEN

Alcohols: Nomenclature. Important methods of preparation (from aldehydes, ketones, alkyl halides and hydration of alkenes). Manufacture of ethanol from molasses. Physical and chemical properties. Reactions with alkali metals and acids. Formation of alkenes, ethers and esters. Reactions with PX3, PX5, SOCl2. Oxidation of alcohols. Dehydrogenation. Phenols: Nomenclature. Preparation of phenol (from sodium benzenesulphonate, benzene diazoniumchloride and chlorobenzene). Physical and chemical properties of phenol. Acidity of phenol. Action of phenol with FeCl3. Bromination, sulphonation and nitration of phenol. Ethers: Nomenclature. Methods of preparation (from alcohols and alkyl halides). Williamson’s synthesis. Physical and chemical properties. Formation of peroxides. Actions with HI, HF and H2SO4. Some commercially important compounds: Methanol, ethanol (fermentation). Aldehydes and ketones: Nomenclature. Electronic structure of carbonyl group. Methods of preparation (from alcohols, acid chlorides, ozonolysis of alkenes and hydration of alkynes). Friedel- Crafts acylation for acetophenone. General properties (physical and chemical) of aldehydes and ketones. Formation of paraldehyde and metaldehyde. Addition of NaHSO3, NH3 and its derivatives, Grignard reagent, HCN and alcohols. Oxidation reactions with Tollen’s reagent and Fehling’s solution. Oxidation of ketones. Reduction with LiAlH4. Clemmensen reduction. Wolff- Kischner reduction. Aldol condensation. Cannizzaro reaction. Carboxylic acid: Nomenclature. Electronic structure of –COOH. Methods of Preparation (from alcohols, aldehydes, ketones, alkyl benzenes and hydrolysis of cyanide). Physical properties. Effects of substituents on acid strength. Chemical reactions.

UNIT 21: ORGANIC COMPOUNDS WITH FUNCTIONAL GROUPS CONTAINING NITROGEN

Amines: Nomenclature. Primary, secondary and tertiary amines. Methods of preparation. Physical properties. Basic nature. Chemical reaction. Separation of primary, secondary and tertiary amines. Cyanides and isocyanides. Diazonium salts. Preparation and chemical reactions of benzene diazoniumchloride in synthetic organic chemistry.

UNIT 22: POLYMERS AND BIOMOLECULES

Polymers: Classification. Addition and condensation polymerization. Copolymerization. Natural rubber and vulcanization. Synthetic rubbers. Condensation polymers. Biopolymers. Biodegradable polymers. Some commercially important polymers: Polyethene, polystyrene, PVC, Teflon, PAN, BUNA-N, BUNA-S, neoprene, Terylene, glyptal, nylon-6, nylon-66 and Bakelite. Biomolecules: Classification of carbohydrates. Structure and properties of glucose. Reducing and non-reducing sugars: Properties of sucrose, maltose and lactose (structures not included). Polysaccharides: Properties of starch and cellulose. Proteins: Amino acids. Zwitterions. Peptide bond. Polypeptides. Primary, secondary and tertiary structures of protein. Denaturation of proteins. Enzymes. Nucleic acids. Types of nucleic acids. DNA and RNA, and their chemical composition. Primary structure of DNA. Double helix. Vitamins: Classification and functions in biosystems.

UNIT 23: ENVIRONMENTAL CHEMISTRY AND CHEMISTRY IN EVERY DAY LIFE

Soil, water and air pollutions. Ozone layer. Smog. Acid rain. Green house effect and global warming. Industrial air pollution. Importance of green chemistry. Chemicals in medicine and health care. Drug-target interaction, Analgesics, tranquillizers, antiseptics, antacids, antihistamines, antibiotics, disinfectants, antifertility drugs, chemicals in food, preservatives, artificial sweetening agents, antioxidants and edible colours, cleansing agents, soaps and synthetic detergents, antimicrobials.